Differential Geometry/pde Seminar
نویسنده
چکیده
The subject of this talk concerns to the classical inverse spectral problem. This inverse problem can be formulated as follows: do the Dirichlet eigenvalues and the derivatives (which order?) of the normalized eigenfunctions at the boundary determine uniquely the coefficients of the corresponding differential operator? For operators of order two this type of theorem is called Borg-Levinson theorem. In the case of the Schrödinger operators the knowledge of the Dirichlet eigenvalues and the normal derivatives of the normalized eigenfunctions at the boundary uniquely determine unknown potential.
منابع مشابه
Reconstruction of 3D Human Facial Images Using Partial Differential Equations
One of the challenging problems in geometric modeling and computer graphics is the construction of realistic human facial geometry. Such geometry are essential for a wide range of applications, such as 3D face recognition, virtual reality applications, facial expression simulation and computer based plastic surgery application. This paper addresses a method for the construction of 3D geometry o...
متن کاملImage Zooming using Non-linear Partial Differential Equation
The main issue in any image zooming techniques is to preserve the structure of the zoomed image. The zoomed image may suffer from the discontinuities in the soft regions and edges; it may contain artifacts, such as image blurring and blocky, and staircase effects. This paper presents a novel image zooming technique using Partial Differential Equations (PDEs). It combines a non-linear Fourth-ord...
متن کاملGeneral ray method for solution of the Dirichlet boundary value problems for elliptic partial differential equations in domains with complicated geometry
New General Ray (GR) method for solution of the Dirichlet boundary value problem for the class of elliptic Partial Differential Equations (PDE) is proposed. GRmethod consists in application of the Radon transform directly to the PDE and in reduction PDE to assemblage of Ordinary Differential Equations (ODE). The class of the PDE includes the Laplace, Poisson and Helmgoltz equations. GRmethod pr...
متن کاملGeometry of Distributions and F − Gordon equation
In this paper we describe the geometry of distributions by their symmetries, and present a simplified proof of the Frobenius theorem and some related corollaries. Then, we study the geometry of solutions of F−Gordon equation; A PDE which appears in differential geometry and relativistic field theory.
متن کاملGeneralized Partial Differential Equations for Interactive Design
This paper presents a method for interactive design by means of extending the PDE based approach for surface generation. The governing partial differential equation is generalized to arbitrary order allowing complex shapes to be designed as single patch PDE surfaces. Using this technique a designer has the flexibility of creating and manipulating the geometry of shape that satisfying an arbitra...
متن کامل